Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Biol Sci ; 291(2021): 20240262, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38654646

RESUMEN

The fossil fish Ptychodus Agassiz, 1834, characterized by a highly distinctive grinding dentition and an estimated gigantic body size (up to around 10 m), has remained one of the most enigmatic extinct elasmobranchs (i.e. sharks, skates and rays) for nearly two centuries. This widespread Cretaceous taxon is common in Albian to Campanian deposits from almost all continents. However, specimens mostly consist of isolated teeth or more or less complete dentitions, whereas cranial and post-cranial skeletal elements are very rare. Here we describe newly discovered material from the early Late Cretaceous of Mexico, including complete articulated specimens with preserved body outline, which reveals crucial information on the anatomy and systematic position of Ptychodus. Our phylogenetic and ecomorphological analyses indicate that ptychodontids were high-speed (tachypelagic) durophagous lamniforms (mackerel sharks), which occupied a specialized predatory niche previously unknown in fossil and extant elasmobranchs. Our results support the view that lamniforms were ecomorphologically highly diverse and represented the dominant group of sharks in Cretaceous marine ecosystems. Ptychodus may have fed predominantly on nektonic hard-shelled prey items such as ammonites and sea turtles rather than on benthic invertebrates, and its extinction during the Campanian, well before the end-Cretaceous crisis, might have been related to competition with emerging blunt-toothed globidensine and prognathodontine mosasaurs.


Asunto(s)
Fósiles , Filogenia , Tiburones , Animales , Fósiles/anatomía & histología , México , Tiburones/anatomía & histología , Tiburones/clasificación , Tiburones/fisiología , Evolución Biológica , Diente/anatomía & histología
3.
Biology (Basel) ; 12(12)2023 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-38132312

RESUMEN

(1) Background: Labial cartilages (LCs), as their name suggests, lie in the folds of the connective tissue, the lips, framing the gape of elasmobranch chondrichthyans. As such, these cartilages lie laterally to the jaws and marginal teeth. They are considered to influence the ability of creating suction during the feeding process. As past studies have shown, LCs in sharks are as diverse as their varied feeding techniques and differ between species in number, size, shape, and position. This allows establishing parameters for inferring the feeding and hunting behaviors in these ecologically important fishes. (2) Methods: We present a study of LCs based on the CT scans of more than 100 extant shark species and, therefore, represent at least one member of every living family within the Euselachii, excluding batoids. (3) Results: Accordingly, sharks without labial cartilages or that have only small remnants are ram feeders or use pure biting and mainly occupy higher trophic levels (tertiary and quaternary consumers), whereas suction-feeding sharks have higher numbers (up to five pairs) of well-developed LCs and occupy slightly lower trophic levels (mainly secondary consumers). Species with unique feeding strategies, like the cookie-cutter shark (Isistius brasiliensis, an ectoparasite), display distinct shapes of LCs, while generalist species, conversely, exhibit a simpler arrangement of LCs. (4) Conclusions: We propose a dichotomous identification key to classify single LCs into different morphotypes and propose combinations of morphotypes that result in suction feeding differing in strength and, therefore, different hunting and feeding strategies. The conclusions of this study allow to infer information about feeding strategies not only in extant less-known sharks but also extinct sharks.

4.
J Vertebr Paleontol ; 42(2): e2162909, 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-37559798

RESUMEN

Isolated teeth belonging to the genus Ptychodus Agassiz, 1834 (Chondrichthyes; Elasmobranchii) from the Upper Cretaceous of the Ryazan and Moscow Oblast regions (European Russia) are described and discussed in detail herein. The taxonomic composition of the Ptychodus assemblage from the Ryazan region is very diverse including the first records of the cuspidate species P. altior and P. anonymus, which thus is largely consistent with those from other contemporaneous European localities. Ptychodus ubiquitously inhabited epicontinental seas of Europe during most of the Cretaceous with the most diverse assemblages coming from southern England, northern Italy, Belgium, and European Russia. Additionally, the material documented here from the Cenomanian of Varavinsky ravine area (Moscow Oblast) represents the northernmost occurrence of Ptychodus hitherto reported from Europe. It is evident that the Late Cretaceous shallow seas of the Russian platform represented a crucial pathway for the dispersal of Ptychodus from the European peri-Tethys to the eastern margins of the Neo-Tethyan Ocean. The Albian-Campanian records of Ptychodus from Europe indicate that its dominance in the peri-Tethys persisted for most of its evolutionary history. A local temperature drop across most of the European shallow seas probably contributed to the narrowing of its geographic range in the peri-Tethyan seas towards the end of the Mesozoic Era. The fossil remains of Ptychodus documented herein are accordingly of utmost importance for better understanding the taxonomic composition of Russian fossil ichthyofaunas and also inform about the dispersal of Ptychodus towards western and eastern peri-Tethyan seas during the Late Cretaceous.

5.
Paleobiology ; 49(2): 329-341, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37564372

RESUMEN

Despite the rich fossil record of Neogene chondrichthyans (chimaeras, sharks, rays, and skates) from Europe, little is known about the macroevolutionary processes that generated their current diversity and geographical distribution. We compiled 4368 Neogene occurrences comprising 102 genera, 41 families, and 12 orders from four European regions (Atlantic, Mediterranean, North Sea, and Paratethys) and evaluated their diversification trajectories and paleobiogeographic patterns. In all regions analyzed, we found that generic richness increased during the early Miocene, then decreased sharply during the middle Miocene in the Paratethys, and moderately during the late Miocene and Pliocene in the Mediterranean and North Seas. Origination rates display the most significant pulses in the early Miocene in all regions. Extinction rate pulses varied across regions, with the Paratethys displaying the most significant pulses during the late Miocene and the Mediterranean and North Seas during the late Miocene and early Pliocene. Overall, up to 27% and 56% of the European Neogene genera are now globally and regionally extinct, respectively. The observed pulses of origination and extinction in the different regions coincide with warming and cooling events that occurred during the Neogene globally and regionally. Our study reveals complex diversity dynamics of Neogene chondrichthyans from Europe and their distinct biogeographic composition despite the multiple marine passages that connected the different marine regions during this time.

6.
Palaeontology ; 66(4)2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37533696

RESUMEN

Studies of the origin of evolutionary novelties (novel traits, feeding modes, behaviours, ecological niches, etc.) have considered a number of taxa experimenting with new body plans, allowing them to occupy new habitats and exploit new trophic resources. In the marine realm, colonization of pelagic environments by marine fishes occurred recurrently through time. Stingrays (Myliobatiformes) are a diverse clade of batoid fishes commonly known to possess venomous tail stings. Current hypotheses suggest that stingrays experimented with a transition from a benthic to a pelagic/benthopelagic habitat coupled with a transition from a non-durophagous diet to extreme durophagy. However, there is no study detailing macroevolutionary patterns to understand how and when habitat shift and feeding specialization arose along their evolutionary history. A new exquisitely preserved fossil stingray from the Eocene Konservat-Lagerstätte of Bolca (Italy) exhibits a unique mosaic of plesiomorphic features of the rajobenthic ecomorph, and derived traits of aquilopelagic taxa, that helps to clarify the evolutionary origin of durophagy and pelagic lifestyle in stingrays. A scenario of early evolution of the aquilopelagic ecomorph is proposed based on new data, and the possible adaptive meaning of the observed evolutionary changes is discussed. The body plan of †Dasyomyliobatis thomyorkei gen. et sp. nov. is intermediate between the rajobenthic and more derived aquilopelagic stingrays, supporting its stem phylogenetic position and the hypothesis that the aquilopelagic body plan arose in association with the evolution of durophagy and pelagic lifestyle from a benthic, soft-prey feeder ancestor.

7.
Biology (Basel) ; 12(7): 952, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37457320

RESUMEN

Almost half of all chondrichthyan species in the Mediterranean Sea are threatened with extinction, according to the IUCN Red List. Due to a substantial lack of access to data on chondrichthyan catches in the Mediterranean Sea, especially of threatened species, the implementation of conservation measures is extremely insufficient. This also concerns the Adriatic Sea. Here we present a detailed and up-to-date assessment of the species occurring in Croatian waters, as the last checklist of chondrichthyans in Croatian waters was conducted in 2009. Occurrence records from historical data, literature and citizen science information have been compiled in order to present a comprehensive list of species occurrences. We found 54 chondrichthyan species between 1822 and 2022, consisting of a single chimaera, 23 rays and skates, and 30 shark species. Here, four additional species are listed but are considered doubtful. Five species are reported here for the first time for Croatian waters that were not listed in the survey from 2009. Nearly one-third of the species reported here are critically endangered in the entire Mediterranean Sea, based on the IUCN Red List. Additionally, we revisited the Croatian records of the sandtiger shark Carcharias taurus Rafinesque, 1810 and discussed its potential confusion with the smalltooth sandtiger shark Odontaspis ferox (Risso, 1810). Our results thus provide novel insights into the historical and current distribution patterns of chondrichthyan fishes in the Croatian Sea and provide a basis for further research as well as conservation measures.

8.
Commun Biol ; 6(1): 496, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37156994

RESUMEN

Environmental controls of species diversity represent a central research focus in evolutionary biology. In the marine realm, sharks are widely distributed, occupying mainly higher trophic levels and varied dietary preferences, mirrored by several morphological traits and behaviours. Recent comparative phylogenetic studies revealed that sharks present a fairly uneven diversification across habitats, from reefs to deep-water. We show preliminary evidence that morphological diversification (disparity) in the feeding system (mandibles) follows these patterns, and we tested hypotheses linking these patterns to morphological specialisation. We conducted a 3D geometric morphometric analysis and phylogenetic comparative methods on 145 specimens representing 90 extant shark species using computed tomography models. We explored how rates of morphological evolution in the jaw correlate with habitat, size, diet, trophic level, and taxonomic order. Our findings show a relationship between disparity and environment, with higher rates of morphological evolution in reef and deep-water habitats. Deep-water species display highly divergent morphologies compared to other sharks. Strikingly, evolutionary rates of jaw disparity are associated with diversification in deep water, but not in reefs. The environmental heterogeneity of the offshore water column exposes the importance of this parameter as a driver of diversification at least in the early part of clade history.


Asunto(s)
Tiburones , Animales , Filogenia , Tiburones/genética , Ecosistema , Mandíbula , Agua
9.
Diversity (Basel) ; 15(3): 311, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36950326

RESUMEN

The Late Jurassic elasmobranch Protospinax annectans is often regarded as a key species to our understanding of crown group elasmobranch interrelationships and the evolutionary history of this group. However, since its first description more than 100 years ago, its phylogenetic position within the Elasmobranchii (sharks and rays) has proven controversial, and a closer relationship between Protospinax and each of the posited superorders (Batomorphii, Squalomorphii, and Galeomorphii) has been proposed over the time. Here we revise this controversial taxon based on new holomorphic specimens from the Late Jurassic Konservat-Lagerstätte of the Solnhofen Archipelago in Bavaria (Germany) and review its skeletal morphology, systematics, and phylogenetic interrelationships. A data matrix with 224 morphological characters was compiled and analyzed under a molecular backbone constraint. Our results indicate a close relationship between Protospinax, angel sharks (Squatiniformes), and saw sharks (Pristiophoriformes). However, the revision of our morphological data matrix within a molecular framework highlights the lack of morphological characters defining certain groups, especially sharks of the order Squaliformes, hampering the phylogenetic resolution of Protospinax annectans with certainty. Furthermore, the monophyly of modern sharks retrieved by molecular studies is only weakly supported by morphological data, stressing the need for more characters to align morphological and molecular studies in the future.

10.
Diversity (Basel) ; 15(3): 386, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36950327

RESUMEN

The Late Jurassic-Early Cretaceous (164-100 Ma) represents one of the main transitional periods in life history. Recent studies unveiled a complex scenario in which abiotic and biotic factors and drivers on regional and global scales due to the fragmentation of Pangaea resulted in dramatic faunal and ecological turnovers in terrestrial and marine environments. However, chondrichthyan faunas from this interval have received surprisingly little recognition. The presence of numerous entire skeletons of chondrichthyans preserved in several localities in southern Germany, often referred to as Konservat-Lagerstätten (e.g., Nusplingen and the Solnhofen Archipelago), provides a unique opportunity of to study the taxonomic composition of these assemblages, their ecological distributions and adaptations, and evolutionary histories in detail. However, even after 160 years of study, the current knowledge of southern Germany's Late Jurassic chondrichthyan diversity remains incomplete. Over the last 20 years, the systematic study and bulk sampling of southern Germany's Late Jurassic deposits significantly increased the number of known fossil chondrichthyan genera from the region (32 in the present study). In the present work, the fossil record, and the taxonomic composition of Late Jurassic chondrichthyans from southern Germany are reviewed and compared with several contemporaneous assemblages from other sites in Europe. Our results suggest, inter alia, that the Late Jurassic chondrichthyans displayed extended distributions within Europe. However, it nevertheless also is evident that the taxonomy of Late Jurassic chondrichthyans is in urgent need of revision.

11.
Vertebr Zool ; 72: 311-370, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35693755

RESUMEN

Elasmobranchs, comprising sharks, skates, and rays, have a long evolutionary history extending back into the Palaeozoic. They are characterized by various unique traits including a predominantly cartilaginous skeleton, superficial prismatic phosphatic layer, and permanent tooth replacement. Moreover, they exhibit a more or less marked sexual dimorphism. Especially the morphology of the chondrocranium and the elements of the whole cranial region of extant and extinct chondrichthyans can provide valuable information about corresponding functions, e.g. the feeding apparatus might reflect the diet of the animals. However, studies on sexual dimorphisms are lacking in orectolobiform sharks, therefore, little is known about possible sexual dimorphic characters in the cranial region in this group. For this reason, we present in this study a comprehensive morphological description of the cranial region of the brownbanded bamboo shark Chiloscyllium punctatum Müller & Henle, 1838, with a special focus on its sexual dimorphic characters. Our results reveal clear morphological differences in both sexes of the examined C. punctatum specimens, particularly in the chondrocranium and the mandibular arch. The female specimen shows a comparatively more robust and compact morphology of the chondrocranium. This pattern is also evident in the mandibular arch, especially in the palatoquadrate. The present study is the first to describe the morphology of an orectolobiform shark species in detail using both manual dissection and micro-CT data. The resulting data furthermore provide a starting point for pending studies and are intended to be a first step in a series of comparative studies on the morphology of the cranial region of orectolobiform sharks, including the determination of possible sexual dimorphic characteristics.

12.
Diversity (Basel) ; 14(6): 456, 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35747489

RESUMEN

Elasmobranchii are relatively well-studied. However, numerous phylogenetic uncertainties about their relationships remain. Here, we revisit the phylogenetic evidence based on a detailed morphological re-evaluation of all the major extant batomorph clades (skates and rays), including several holomorphic fossil taxa from the Palaeozoic, Mesozoic and Cenozoic, and an extensive outgroup sampling, which includes sharks, chimaeras and several other fossil chondrichthyans. The parsimony and maximum-likelihood analyses found more resolved but contrasting topologies, with the Bayesian inference tree neither supporting nor disfavouring any of them. Overall, the analyses result in similar clade compositions and topologies, with the Jurassic batomorphs forming the sister clade to all the other batomorphs, whilst all the Cretaceous batomorphs are nested within the remaining main clades. The disparate arrangements recovered under the different criteria suggest that a detailed study of Jurassic taxa is of utmost importance to present a more consistent topology in the deeper nodes, as issues continue to be present when analysing those clades previously recognized only by molecular analyses (e.g., Rhinopristiformes and Torpediniformes). The consistent placement of fossil taxa within specific groups by the different phylogenetic criteria is promising and indicates that the inclusion of more fossil taxa in the present matrix will likely not cause loss of resolution, therefore suggesting that a strong phylogenetic signal can be recovered from fossil taxa.

13.
Proc Biol Sci ; 289(1977): 20220808, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35765842

RESUMEN

Shark teeth are one of the most abundant vertebrate fossils, and because tooth size generally correlates with body size, their accumulations document the size structure of populations. Understanding how ecological and environmental processes influence size structure, and how this extends to influence these dental distributions, may offer a window into the ecological and environmental dynamics of past and present shark populations. Here, we examine the dental distributions of sand tigers, including extant Carcharias taurus and extinct Striatolamia macrota, to reconstruct the size structure for a contemporary locality and four Eocene localities. We compare empirical distributions against expectations from a population simulation to gain insight into potential governing ecological processes. Specifically, we investigate the influence of dispersal flexibility to and from protected nurseries. We show that changing the flexibility of initial dispersal of juveniles from the nursery and annual migration of adults to the nursery explains a large amount of dental distribution variability. Our framework predicts dispersal strategies of an extant sand tiger population, and supports nurseries as important components of sand tiger life history in both extant and Eocene populations. These results suggest nursery protection may be vital for shark conservation with increasing anthropogenic impacts and climate change.


Asunto(s)
Tiburones , Animales , Efectos Antropogénicos , Tamaño Corporal , Demografía
14.
J Anat ; 241(2): 372-392, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35428996

RESUMEN

The lifelong tooth replacement in elasmobranch fishes (sharks, rays and skates) has led to the assemblage of a great number of teeth from fossil and extant species, rendering tooth morphology an important character for taxonomic descriptions, analysing phylogenetic interrelationships and deciphering their evolutionary history (e.g. origination, divergence, extinction). Heterodonty (exhibition of different tooth morphologies) occurs in most elasmobranch species and has proven to be one of the main challenges for these analyses. Although numerous shark species are discovered and described every year, detailed descriptions of tooth morphologies and heterodonty patterns are lacking or are only insufficiently known for most species. Here, we use landmark-based 2D geometric morphometrics on teeth of the tiger shark Galeocerdo cuvier to analyse and describe dental heterodonties among four different ontogenetic stages ranging from embryo to adult. Our results reveal rather gradual and subtle ontogenetic shape changes, mostly characterized by increasing size and complexity of the teeth. We furthermore provide the first comprehensive description of embryonic dental morphologies in tiger sharks. Also, tooth shapes of tiger sharks in different ontogenetic stages are re-assessed and depicted in detail. Finally, multiple cases of tooth file reversal are described. This study, therefore, contributes to our knowledge of dental traits across ontogeny in the extant tiger shark G. cuvier and provides a baseline for further morphological and genetic studies on the dental variation in sharks. Therefore, it has the potential to assist elucidating the underlying developmental and evolutionary processes behind the vast dental diversity observed in elasmobranch fishes today and in deep time.


Asunto(s)
Tiburones , Rajidae , Animales , Dentición , Fósiles , Filogenia , Tiburones/anatomía & histología
15.
J Afr Earth Sci ; 187: 104440, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35111270

RESUMEN

The first articulated dentition of †Ptychodus from Africa is described herein. The specimen, likely coming from the Turonian of the Asfla area (Goulmima region, southeastern Morocco), exhibits a well-preserved lower dental plate of a second-level predator. A new species, †P. maghrebianus sp. nov., is erected herein based on this durophagous dentition characterised by imbricated cuspidate teeth. We employed for the first time in †Ptychodus multiple quantitative analyses and statistical parametric and non-parametric tests to process biometrical data taken from articulated, associated and isolated teeth. The quantitative approach (morphospace analysis) is exploited herein to support the traditional taxonomic identification (qualitative examination) of †P. maghrebianus sp. nov. and to separate it from the similar cuspidate species, †P. mortoni. Morphospace reconstructions confirm a marked lower dental heterodonty (mesio-distal patterns) for both species. The analysis protocol employed here also allows assigning indeterminate teeth as belonging to †P. mortoni. The reconstruction of the entire lower dental plate of †P. maghrebianus sp. nov. shows a cuspidate dentition probably able to reduce tooth damages when crushing thin-shelled prey. Both dental morphologies and tooth wear patterns suggest a peculiar food processing and a diet mainly consisting of bivalves, decapods and small fish for this durophagous predator. Trophic reconstructions of the Turonian ichthyofauna inhabiting the middle to outer ramp environment of the Asfla area emphasize that †P. maghrebianus sp. nov. and the batoid †Tingitanius most likely represented second-level consumers, whereas the sclerorhynchiforms †Asflapristis and †Ptychotrygon represented third-level predators. Top positions within the food web were occupied by larger predaceous elasmobranchs (e.g., †Squalicorax).

16.
Front Zool ; 19(1): 7, 2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-35123488

RESUMEN

BACKGROUND: The onset of morphological differences between related groups can be tracked at early stages during embryological development. This is expressed in functional traits that start with minor variations, but eventually diverge to defined specific morphologies. Several processes during this period, like proliferation, remodelling, and apoptosis for instance, can account for the variability observed between related groups. Morphological divergence through development is often associated with the hourglass model, in which early stages display higher variability and reach a conserved point with reduced variability from which divergence occurs again to the final phenotype. RESULTS: Here we explored the patterns of developmental shape changes in the lower jaw of two shark species, the bamboo shark (Chiloscyllium punctatum) and the catshark (Scyliorhinus canicula). These two species present marked differences in their foraging behaviour, which is reflected in their adult jaw morphology. By tracing the developmental sequence of the cartilage condensation, we identified the onset of cartilage for both species at around stage 31. Other structures that developed later without a noticeable anlage were the labial cartilages, which appear at around stage 33. We observed that the lower jaw displays striking differences in shape from the earliest moments, without any overlap in shape through the compared stages. CONCLUSIONS: The differences observed are also reflected in the functional variation in feeding mechanism between both species. Likewise, the trajectory analysis shows that the main differences are in the magnitude of the shape change through time. Both species follow a unique trajectory, which is explained by the timing between stages.

17.
Sci Rep ; 12(1): 144, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34996895

RESUMEN

Nodosauridae is a group of thyreophoran dinosaurs characterized by a collar of prominent osteoderms. In comparison to its sister group, the often club-tailed ankylosaurids, a different lifestyle of nodosaurids could be assumed based on their neuroanatomy and weaponry, e.g., regarding applied defensive strategies. The holotype of the nodosaurid Struthiosaurus austriacus consists of a single partial braincase from the Late Cretaceous of Austria. Since neuroanatomy is considered to be associated with ecological tendencies, we created digital models of the braincase based on micro-CT data. The cranial endocast of S. austriacus generally resembles those of its relatives. A network of vascular canals surrounding the brain cavity further supports special thermoregulatory adaptations within Ankylosauria. The horizontal orientation of the lateral semicircular canal independently confirms previous appraisals of head posture for S. austriacus and, hence, strengthens the usage of the LSC as proxy for habitual head posture in fossil tetrapods. The short anterior and angular lateral semicircular canals, combined with the relatively shortest dinosaurian cochlear duct known so far and the lack of a floccular recess suggest a rather inert lifestyle without the necessity of sophisticated senses for equilibrium and hearing in S. austriacus. These observations agree with an animal that adapted to a comparatively inactive lifestyle with limited social interactions.


Asunto(s)
Encéfalo/anatomía & histología , Dinosaurios/anatomía & histología , Fósiles/anatomía & histología , Cráneo/anatomía & histología , Animales , Conducta Animal , Evolución Biológica , Encéfalo/diagnóstico por imagen , Ecosistema , Fósiles/diagnóstico por imagen , Movimientos de la Cabeza , Neuroanatomía , Paleontología , Postura , Conducta Sedentaria , Canales Semicirculares/anatomía & histología , Canales Semicirculares/diagnóstico por imagen , Cráneo/diagnóstico por imagen , Interacción Social , Especificidad de la Especie , Microtomografía por Rayos X
18.
J Vertebr Paleontol ; 42(2)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37564697

RESUMEN

A new extinct sclerorhynchoid sawfish, Ptychotrygon ameghinorum sp. nov., is presented here based on abundant isolated teeth and some dermal denticles, which were recovered from the Mata Amarilla Formation, belonging to the lower Upper Cretaceous of the Santa Cruz Province in the Austral Basin of Patagonia, Argentina. This new species is the first Ptychotrygon occurrence in the southern hemisphere, which so far only has been reported from northern hemisphere deposits (Europe, North Africa, and North America). The presence of P. ameghinorum sp. nov. in these southern high-latitude deposits of Patagonia, Argentina, extends the geographic range of Ptychotrygon considerably southwards. This distribution pattern in the "middle" Cretaceous seems to correlate with the South Atlantic opening at the end of the Albian. The presence of lateral cephalic dermal denticles and the simultaneous absence of rostral denticles in the abundant fossil material support the view that Ptychotrygon did not develop such rostral structures. A reinvestigation of all known species assigned to Ptychotrygon reveals that P. ellae is a junior synonym of P. boothi, P. benningensis belongs to Texatrygon, P. rugosum belongs to Asflapristis, and P. clementsi represents an unidentifiable species (Ptychotrygon? sp.). The stratigraphic distribution demonstrates that Ptychotrygon might have originated in the Albian in south-western Europe and subsequently dispersed to obtain its widest distribution during the Cenomanian. In the Coniacian, a steep diversity decline is recognizable with a subsequent distribution shift from Europe to North America.

19.
J Anat ; 240(6): 1095-1126, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34927245

RESUMEN

Every night the greatest migration on Earth starts in the deep pelagic oceans where organisms move up to the meso- and epipelagic to find food and return to the deeper zones during the day. One of the dominant fish taxa undertaking vertical migrations are the dragonfishes (Stomiiformes). However, the functional aspects of locomotion and the architecture of the musculotendinous system (MTS) in these fishes have never been examined. In general, the MTS is organized in segmented blocks of specific three-dimensional 'W-shaped' foldings, the myomeres, separated by thin sheets of connective tissue, the myosepta. Within a myoseptum characteristic intermuscular bones or tendons may be developed. Together with the fins, the MTS forms the functional unit for locomotion in fishes. For this study, microdissections of cleared and double stained specimens of seven stomiiform species (Astronesthes sp., Chauliodus sloani, Malacosteus australis, Eustomias simplex, Polymetme sp., Sigmops elongatus, Argyropelecus affinis) were conducted to investigate their MTS. Soft tissue was investigated non-invasively in E. schmidti using a micro-CT scan of one specimen stained with iodine. Additionally, classical histological serial sections were consulted. The investigated stomiiforms are characterized by the absence of anterior cones in the anteriormost myosepta. These cones are developed in myosepta at the level of the dorsal fin and elongate gradually in more posterior myosepta. In all but one investigated stomiiform taxon the horizontal septum is reduced. The amount of connective tissue in the myosepta is very low anteriorly, but increases gradually with body length. Red musculature overlies laterally the white musculature and exhibits strong tendons in each myomere within the muscle bundles dorsal and ventral to the horizontal midline. The amount of red musculature increases immensely towards the caudal fin. The elongated lateral tendons of the posterior body segments attach in a highly complex pattern on the caudal-fin rays, which indicates that the posterior most myosepta are equipped for a multisegmental force transmission towards the caudal fin. This unique anatomical condition might be essential for steady swimming during diel vertical migrations, when prey is rarely available.


Asunto(s)
Peces , Tendones , Animales , Tejido Conectivo , Peces/fisiología , Músculo Esquelético/fisiología , Natación/fisiología , Tendones/fisiología
20.
Paleobiology ; 47(4): 574-590, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34866693

RESUMEN

Sharks have a long and rich fossil record that consists predominantly of isolated teeth due to the poorly mineralized cartilaginous skeleton. Tiger sharks (Galeocerdo), which represent apex predators in modern oceans, have a known fossil record extending back into the early Eocene (ca. 56 Ma) and comprise 22 recognized extinct and one extant species to date. However, many of the fossil species remain dubious, resulting in a still unresolved evolutionary history of the tiger shark genus. Here, we present a revision of the fossil record of Galeocerdo by examining the morphological diversity and disparity of teeth in deep time. We use landmark-based geometric morphometrics to quantify tooth shapes and qualitative morphological characters for species discrimination. Employing this combined approach on fossil and extant tiger shark teeth, our results only support six species to represent valid taxa. Furthermore, the disparity analysis revealed that diversity and disparity are not implicitly correlated and that Galeocerdo retained a relatively high dental disparity since the Miocene despite its decrease from four to one species. With this study, we demonstrate that the combined approach of quantitative geometric morphometric techniques and qualitative morphological comparisons on isolated shark teeth provides a useful tool to distinguish between species with highly similar tooth morphologies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...